IRIS Texture Analysis and Feature Extraction for Biometric Pattern Recognition

نویسندگان

  • Debnath Bhattacharyya
  • Poulami Das
  • Samir Kumar Bandyopadhyay
  • Tai-hoon Kim
چکیده

In this paper we propose a new biometric-based Iris feature extraction system. The system automatically acquires the biometric data in numerical format (Iris Images) by using a set of properly located sensors. We are considering camera as a high quality sensor. Iris Images are typically color images that are processed to gray scale images. Then the Feature extraction algorithm is used to detect “IRIS Effective Region (IER)” and then extract features from “IRIS Effective Region (IER)” that are numerical characterization of the underlying biometrics. Later on this work will be helping to identify an individual by comparing the feature obtained from the feature extraction algorithm with the previously stored feature by producing a similarity score. This score will be indicating the degree of similarity between a pair of biometrics data under consideration. Depending on degree of similarity, individual can be identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Parameters Involved in the Iris Recognition System

Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...

متن کامل

A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition

With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...

متن کامل

Texture Feature Extraction using Partitioned/Sectorized Complex Planes in Transform Domain for Iris & Palmprint Recognition

Feature vector generation is an important step in biometric authentication. Biometric traits such as fingerprint, palmprint, iris, & finger-knuckle prints are rich in texture. This texture is unique and the feature vector extraction algorithm should correctly represent the texture pattern. In this paper a texture feature extraction methodology is proposed for iris and pamlprints. This method is...

متن کامل

An Empirical Analysis Over the Four Different Feature-Based Face and Iris Biometric Recognition Techniques

Recently, multimodal biometric systems have been widely accepted, which has shown increased accuracy and population coverage, while reducing vulnerability to spoofing. The main feature to multimodal biometrics is the amalgamation of different biometric modality data at the feature extraction, matching score, or decision levels. Recently, a lot of works are presented in the literature for multi-...

متن کامل

Algorithms to Process and Measure Biometric Information Content in Low Quality Face and Iris Images

.............................................................................................................................. 2 Acknowledgments............................................................................................................... 4 1 Chapter 1................................................................................................................... 14 Introduct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008